SSF-I1

Eco-friendly, facile preparation of carbon nitride/titanium dioxide nanocomposites for catalytic applications.

Hanna Maltanava¹, Nikita Belko¹ and Polina Kuzhir¹

¹Department of Physics and Mathematics, University of Eastern Finland, FI-80100 Joensuu, Finland. Email: nikita.belko@uef.fi

Graphitic carbon nitride (g-C₃N₄) is a widely used and versatile catalytic material [1]. Catalytic properties of g-C₃N₄ are enhanced when it forms nanocomposites with titanium dioxide (TiO₂) due to the complementary electronic properties of these two materials [2]. In previously reported works [3], g-C₃N₄/TiO₂ nanocomposites were prepared at relatively high temperatures (550–600 °C), which is connected to increased energy consumption.

We report a novel synthetic strategy for the preparation of *g*-C₃N₄/TiO₂ nanocomposites. TiO₂ nanoparticles were prepared via the sol-gel technique according to the procedure described in [4]. Urea or melamine were added directly to the TiO₂ hydrosol. The mixtures were lyophilized and subjected to annealing in air at 200, 300, 450, and 600 °C. For comparison, pure urea, melamine, and TiO₂ hydrosol were subjected to the same treatment. The resulting materials were characterized using X-ray photoelectron spectroscopy (XPS), X-ray diffraction analysis (XRD), scanning electron microscopy (SEM), and diffuse reflectance spectroscopy (DRS).

According to XPS and XRD analyses, g-C₃N₄ with a high degree of crystallinity was formed from both urea and melamine at 600 °C. Thermal treatment below 500 °C did not result in the formation of the g-C₃N₄ phase. The mixture of urea with TiO₂ exhibited contrasting behavior. More specifically, the g-C₃N₄ phase was evident even after heating to 200 or 300 °C, although with relatively poor crystallinity. After thermal treatment at 450 or 600 °C, no g-C₃N₄ phase was detected. These data indicate that TiO₂ efficiently catalyzes the polymerization of urea thus allowing us to obtain the g-C₃N₄ phase from the mixture of melamine with TiO₂. SEM micrographs revealed mesoporous morphology with high specific area of the prepared g-C₃N₄ phases.

To summarize, a new method to prepare g-C₃N₄/TiO₂ nanocomposites was reported. The nanocomposites were formed at 200 and 300 °C, in contrast to previously reported methods that required heating to ~600 °C. The nanocomposites exhibited highly developed surface and diffuse reflectance extended to the visible spectral region. These materials will be used for a variety of catalytic applications.

REFERENCES

- [1] M. Talukdar and P. Deb; Carbon 192 (2022) pp. 308-331.
- [2] A. Crake et al.; Applied Catalysis B: Environmental 242 (2019) pp. 369-378.
- [3] M. Sun et al; Dalton Transactions 45 (2016) pp. 12702-12709.
- [4] E. Ovodok et al.; *Materials Today: Proceedings* 5 (2018) pp. 17422-17430.